Fluorescence imaging of tracer distributions in soil profiles.
نویسندگان
چکیده
To evaluate and parametrize transport models for the vadose (partially water-unsaturated) zone, information about the spatial distributions of solutes is needed. We describe a technique for the simultaneous imaging of several fluorescent tracers in structured field soils. With this technique, we obtain information on local mixing under field conditions. Local dispersion is a decisive process that discriminates different flow regimes. The imaging device consists of a high-power xenon lamp and a sensitive charge coupled device (CCD) camera. The three fluorescent dyes Brilliant sulfaflavine (BF), Sulforhodamine B (SB), and Oxazine 170 (OX) were chosen as solute tracers for their spectroscopic properties and different sorption coefficients. We conducted a field experiment using these tracers and took images of their distribution in a vertical soil profile. The fluorescence images (1242 by 1152 pixels) were corrected for nonuniform lighting, changing surface roughness, and varying optical properties of the soil profile. The resulting two-dimensional relative concentration distributions were similar for BF and SB. The reason might be the fast transport regime, which prevents the establishment of sorption equilibria. According to its higher sorption coefficient, OX was more strongly retarded. In this paper, we show that the fluorescence imaging technique is a powerful tool for the in-situ investigation of transport processes of fluorescent solute tracers in soil profiles. Due to the high spatial resolution of the tracer concentration maps and the ability to detect the flow field characteristics of differently reactive tracers simultaneously under field conditions, this technique provides valuable experimental data for the test and development of theoretical models for heterogeneous solute transport in soils.
منابع مشابه
Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملA Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy
Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...
متن کاملPreparation and Biodistribution of [67Ga]-labeled- oxytocin for SPECT purposes
Background: Oxytocin (OT) is a paracrine hormone with various biological activities and many sex organs in both sexes, as well as many tumor cells have shown to have related receptors. In this study the development of a receptor imaging tracer for possible tumor imaging has been described. Materials and Methods: OT was successively labeled with [67Ga]-gallium chloride after conjugation with fre...
متن کاملWhole-Body Distribution of Donepezil as an Acetylcholinesterase Inhibitor after Oral Administration in Normal Human Subjects: A 11C-donepezil PET Study
Objective(s): It is difficult to investigate the whole-body distribution of an orally administered drug by means of positron emission tomography (PET), owing to the short physical half-life of radionuclides, especially when 11C-labeled compounds are tested. Therefore, we aimed to examine the whole-body distribution of donepezil (DNP) as an acetylcholinesterase inhibitor by means of 11C-DNP PET ...
متن کاملStudy of Saturated Hydraulic Conductivity Variations in Different Aggregate Size Distributions in an Agricultural Soil
Saturated hydraulic conductivity (Ks) is one of the most important soil physical characteristics that plays a major role in the soil hydrological behaviour. It is mainly affected by the soil structure characteristics. Aggregate size distribution is a measure of soil structure formation that can affect Ks. In this study, variations of Ks were investigated in various aggregate size distributions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 35 4 شماره
صفحات -
تاریخ انتشار 2001